9 research outputs found

    Conception et commande de systèmes microrobotiques magnétiques en milieu ambiant

    Get PDF
    In the past few years, much attention has been given to autonomous systems of micrometric size. The small size of these robots, or particles, makes it impossible to embed their energy sources. Wireless systems for actuating and control, in particular through magnetic effects, have been proposed. They usually operate in a liquid environment. This environment is favored due to the drag force which stabilizes a system and therefore makes it easier to control. However, this medium comes with a major limitation to the moving speed of these particles. In order to fully exploit the potential for high speed actuation inherent to the low inertia of these small-sized particles, this thesis proposes the design and control of a microrobotic system dedicated to high speed actuation.The design choices, such increasing the magnetic force, using ferromagnetic particles and choosing to work in an ambient environment increases the displacement speed. However, the dry environment leads to adhesion issues between the particle and the surface of the working substrate, and lack of knowledge-based model. Various solutions are proposed in this thesis to overcome or reduce adhesion forces in this environment, from the coupled actuation of the magnetic, to the mechanical structuring of the surface of the substrate. A closed-loop control has also been integrated to increase the accuracy of the positioning and orientation of the particles. An approach to the synthesis and implementation of a proportional regulation is proposed for the two control parameters. The chosen experimental approach makes it possible to quantify the issues related to the ambient environment and bring systematic solutions to them.This work is but a first step in the integration of microrobotic systems in ambient environments, but it offers a control methodology, which is adapted to its specificities.Ces dernières années une attention particulière a été portée sur les systèmes autonomes de taille micrométrique. La taille de ces robots, ou particules, rend impossible l’embarquement d’énergie. Des systèmes d’actionnement et de contrôle à distance, notamment par effets magnétiques, ont été proposés. Ils évoluent généralement dans le milieu liquide. Ce milieu est privilégié en raison de la force de trainée qui stabilise les systèmes et simplifie donc leur contrôle. En revanche, ce milieu induit une limitation majeure sur la vitesse de déplacement de ces particules. Pour exploiter pleinement le potentiel d’actionnement rapide lié à la faible inertie de ces particules de petite taille, cette thèse propose la conception et la commande d’un système microrobotique dédié à l’actionnement haute vitesse. Les choix de conception, notamment l’augmentation de la force magnétique, l’utilisation de particules ferromagnétiques et le choix d’un environnement de travail en milieu ambiant permettent d’atteindre de grandes vitesses de déplacements. Cependant, le milieu ambiant pose des problématiques d’adhésion entre la particule et le substrat de travail et d’absence de modèle de connaissance. Des solutions sont proposées pour vaincre ou réduire les forces d’adhésion dans ce milieu, allant de l’actionnement en couple de la particule magnétique à la structuration mécanique du substrat. Une est également implémentée pour augmenter la précision du positionnement et de l’orientation des particules. Une approche permettant de synthétiser et d’implémenter une loi de régulation proportionnelle des deux paramètres de contrôle est proposée. L’approche expérimentale adoptée permet de quantifier les problématiques rencontrées dans le milieu ambiant et de proposer des solutions systématiques. Ce travail n’est qu’un premier pas dans l’intégration des systèmes microrobotiques en milieu ambiant, mais il fournit des méthodologies de contrôle adaptées à ses spécificités

    An overview of multiple DoF magnetic actuated micro-robots.

    No full text
    International audienceThis paper reviews the state of the art of untethered, wirelessly actuated and controlled micro-robots. Research for such tools is being increasingly pursued to provide solutions for medical, biological and industrial applications. Indeed, due to their small size they o er both high velocity, and accessibility to tiny and clustered environments. These systems could be used for in vitro tasks on lab-on-chips in order to push and/or sort biological cells, or for in vivo tasks like minimally invasive surgery and could also be used in the micro-assembly of microcomponents. However, there are many constraints to actuating, manufacturing and controlling micro-robots, such as the impracticability of on-board sensors and actuators, common hysteresis phenomena and nonlinear behavior in the environment, and the high susceptibility to slight variations in the atmosphere like tiny dust or humidity. In this work, the major challenges that must be addressed are reviewed and some of the best performing multiple DoF micro-robots sized from tens to hundreds m are presented. The di erent magnetic micro-robot platforms are presented and compared. The actuation method as well as the control strategies are analyzed. The reviewed magnetic micro-robots highlight the ability of wireless actuation and show that high velocities can be reached. However, major issues on actuation and control must be overcome in order to perform complex micro-manipulation tasks

    Design and first experiments on MagPieR, the magnetic microrobot.

    No full text
    International audienceThis article deals with the design, the actuation and the control of magnetic microrobots. The interest in such microscale robots actuated by remote force fields is increasing since a large range of application fields could benefit from these small size manipulators. However major scientific challenges such as the optimization of the actuation platform, or the reduction of the adhesion between the robot and the substrate must still be overcome to perform complex micromanipulations. This article presents an example of a magnetic microrobot, MagPieR. Its design, fabrication, actuation and control are detailed. First experiments are presented, and the issues that must still be overcome are highlighted

    Conception and control of magnetic microrobotic systems in a dry environment

    No full text
    Ces dernières années une attention particulière a été portée sur les systèmes autonomes de taille micrométrique. La taille de ces robots, ou particules, rend impossible l’embarquement d’énergie. Des systèmes d’actionnement et de contrôle à distance, notamment par effets magnétiques, ont été proposés. Ils évoluent généralement dans le milieu liquide. Ce milieu est privilégié en raison de la force de trainée qui stabilise les systèmes et simplifie donc leur contrôle. En revanche, ce milieu induit une limitation majeure sur la vitesse de déplacement de ces particules. Pour exploiter pleinement le potentiel d’actionnement rapide lié à la faible inertie de ces particules de petite taille, cette thèse propose la conception et la commande d’un système microrobotique dédié à l’actionnement haute vitesse. Les choix de conception, notamment l’augmentation de la force magnétique, l’utilisation de particules ferromagnétiques et le choix d’un environnement de travail en milieu ambiant permettent d’atteindre de grandes vitesses de déplacements. Cependant, le milieu ambiant pose des problématiques d’adhésion entre la particule et le substrat de travail et d’absence de modèle de connaissance. Des solutions sont proposées pour vaincre ou réduire les forces d’adhésion dans ce milieu, allant de l’actionnement en couple de la particule magnétique à la structuration mécanique du substrat. Une est également implémentée pour augmenter la précision du positionnement et de l’orientation des particules. Une approche permettant de synthétiser et d’implémenter une loi de régulation proportionnelle des deux paramètres de contrôle est proposée. L’approche expérimentale adoptée permet de quantifier les problématiques rencontrées dans le milieu ambiant et de proposer des solutions systématiques. Ce travail n’est qu’un premier pas dans l’intégration des systèmes microrobotiques en milieu ambiant, mais il fournit des méthodologies de contrôle adaptées à ses spécificités.In the past few years, much attention has been given to autonomous systems of micrometric size. The small size of these robots, or particles, makes it impossible to embed their energy sources. Wireless systems for actuating and control, in particular through magnetic effects, have been proposed. They usually operate in a liquid environment. This environment is favored due to the drag force which stabilizes a system and therefore makes it easier to control. However, this medium comes with a major limitation to the moving speed of these particles. In order to fully exploit the potential for high speed actuation inherent to the low inertia of these small-sized particles, this thesis proposes the design and control of a microrobotic system dedicated to high speed actuation.The design choices, such increasing the magnetic force, using ferromagnetic particles and choosing to work in an ambient environment increases the displacement speed. However, the dry environment leads to adhesion issues between the particle and the surface of the working substrate, and lack of knowledge-based model. Various solutions are proposed in this thesis to overcome or reduce adhesion forces in this environment, from the coupled actuation of the magnetic, to the mechanical structuring of the surface of the substrate. A closed-loop control has also been integrated to increase the accuracy of the positioning and orientation of the particles. An approach to the synthesis and implementation of a proportional regulation is proposed for the two control parameters. The chosen experimental approach makes it possible to quantify the issues related to the ambient environment and bring systematic solutions to them.This work is but a first step in the integration of microrobotic systems in ambient environments, but it offers a control methodology, which is adapted to its specificities

    Fast, repeatable and precise magnetic actuation in ambient environments at the micrometer scale

    No full text
    International audienceThis work aims at increasing the velocity of micrometer scale particles controlled by non contact magnetic actuation systems. The particles are placed in an ambient environment (i.e. in air) to minimize the drag forces. However this approach raises two major issues: the repeatability and the precision of position are difficult to obtain in ambient environments due to the adhesion force between the substrate and the particle. This work proposes to use first a magnetic torque to provoke in-plane rotation of the particle to overcome adhesion between the particle and the substrate. Then a magnetic force is applied to induce the movement of the particle. To ensure that the static friction is broken and that the position of the particle can be controlled precisely a current pulse actuation mode is used. A dedicated closed loop control law which controls both the amplitude and the duration of the current simultaneously is proposed to ensure accurate positioning of the particle. Speed during pulse can reach 176 mm/s (more than 350 body lengths per second) in open loop on silicon substrates. Adhesion is overcome in 95% of the tests using the magnetic torque, compared to 66% using classical approaches. Precision of positioning of less than 20% of the size of the particle can be reached. The approach proposed in this paper is generic so that it can be easily transposed to other systems in the literature. The large number of experimental tests provides a deep understanding of the possibilities and challenges of magnetic actuation in ambient environments

    Position control of a ferromagnetic micro-particle in a dry environment.

    No full text
    International audienceMost of current wireless micro-robotic systems evolve in liquids, as the predominance, at this scale, of surface adhesion makes it hard to control these systems in dry environments. The purpose of this article is to propose a method to improve wireless micro-devices performances in the air, by focusing on the workspace substrate. In this work, a magnetically actuated micro-particle is described and a strategy to limit the surface forces is presented. The micro-device behavior is studied and compared on five different surfaces.We demonstrate that reducing the electrical resistivity and the roughness of the surface helps improving the particle actuation occurrence. Furthermore, to validate the proposed approach,the particle is positioned with high precision using a closed loop control based on visual feedback. The micro-particle response is identified using a statistical approach over a large microparticle response database
    corecore